miR-326 Targets Antiapoptotic Bcl-xL and Mediates Apoptosis in Human Platelets
نویسندگان
چکیده
Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.
منابع مشابه
Detection of apoptosis-associated microRNA in human apheresis platelets during storage by quantitative real-time polymerase chain reaction analysis.
BACKGROUND Platelet transfusion is an essential part of the treatment of a variety of conditions such as thrombocytopenia and qualitative platelet disorders. As indicated in previous reports, during in vitro storage, platelets undergo morphological and physiological changes collectively known as the platelet storage lesion. Apoptosis is a programmed process of cell death, which has been conside...
متن کاملTransmembrane E3 ligase RNF183 mediates ER stress-induced apoptosis by degrading Bcl-xL
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and triggers the unfolded protein response (UPR). Failure to resolve ER stress leads to apoptotic cell death via a yet unclear mechanism. Here, we show that RNF183, a membrane-spanning RING finger protein, localizes to the ER and exhibits classic E3 ligase activities. Sustained ER stress induced by differe...
متن کاملMicroRNA‑133a and microRNA‑326 co‑contribute to hepatocellular carcinoma 5‑fluorouracil and cisplatin sensitivity by directly targeting B‑cell lymphoma‑extra large.
Chemotherapy is one of the most common treatments used for hepatocellular carcinoma (HCC), which effectively improves outcome and reduces tumor recurrence. However, the drug resistance mechanisms involved in chemotherapy, which is the predominant challenge in HCC treatment, remain to be fully elucidated. Therefore, there is an urgent requirement for the identification of novel therapeutic strat...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملMyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3
The molecules that regulate the apoptosis cascade are also involved in differentiation and syncytial fusion in skeletal muscle. MyoD is a myogenic transcription factor that plays essential roles in muscle differentiation. We noticed that MyoD(-/-) myoblasts display remarkable resistance to apoptosis by down-regulation of miR-1 (microRNA-1) and miR-206 and by up-regulation of Pax3. This resulted...
متن کامل